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Introduction 
 

In Liquid Scintillation Counting (LSC), α- or fission events can be distinguished from β- and γ- events 
by characteristic differences in their light curves. The reason is a predominant population of triplet states 
of the scintillator by strong ionizing particles. These triplet states are metastable which leads to a tailing 
in the light curve (Fig. 1a).  

In a common experimental setup for α-LSC, analog pulse shape discrimination (PSD) is used to 
separate the β/γ- part of the spectrum. However, β/γ- pile up events in a time window of about 150 ns -
250 ns (Fig.1b) can simulate a heavier particle event in the PSD circuit. This leads to a pseudo α-
background in the spectrum. Pile ups are occurring randomly at high count rates but can also be 
produced by decay cascades of a nuclide.  

 

 

Figure 1a. Figure 1b. 
 
In transactinide research with the fast liquid-liquid extraction system SISAK-3 [1], the transactinide 

element under investigation is extracted into an organic phase containing a liquid scintillator. In these 
experiments, very few α- decays have to be identified at a high level of β/γ- events. Therefore, any pile up 
background makes the unambiguous identification of the transactinide nuclides difficult or impossible. In 
order to apply LSC also in those experiments, the analog PSD has been coupled with a digital pulse 
recorder. The digitally recorded pulses are off line analysed by an artificial neural network. 
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Electronics 
 

The setup used is shown schematically in Fig. 2. The photomultiplier (PM), the charge sensitive 
preamplifier (CSPA), the PSD module, and the time to amplitude converter (TAC), are the standard 
modules for common LSC. From the built in single channel analyser of the TAC, a trigger signal for the 
digital pulse recorder is derived. The CSPA integrates the signal. Therefore, it has to be differentated by 
the timing filter amplifier (TFA) to get the original shape of the signal. As digital pulse recorder, the PC 
module acqiris DP110 is used. This module allows a maximum sampling rate of 1 GS/s at a bandwidth of 
500 MHz. Besides the pulse also the time of the corresponding trigger event is recorded which allows the 
search for correlated events. 

 

 
Figure 2. 

 
Artificial neural network 
 

Artificial neural networks are successfully used for pattern recognition especially if an analytical 
description of the characteristics of the patterns is difficult or impossible. The artificial model of a neuron 
is rather simple. Each input to a neuron is multiplied by a weighting factor. The weights are 
corresponding to the synaptic strength in a natural neural network. The output is some function, the so 
called transfer function, of the weighted sum of all inputs. The weights are initialized by some random 
values. Learning of the network means adjusting the weighting factors.  

For the digital pulse shape discrimination with neural networks (PSD-NN), a 3 layer feed forward 
network was modeled with the program SMART [2]. The input layer has 175 neurons corresponding to 
175 samples at every 2 ns of a pulse. The second (hidden) layer has 5 neurons, and the output layer has 
two neurons corresponding to an alpha event and any other type of event, respectively. Each output of a 
layer is connected to each neuron of the next higher layer. The sigmoid function is used as transfer 
function which gives output values between 0 and 1. The weights are adjusted during the training phase 
with the backpropagation algorithm [3]. In principle, the weights are corrected in proportion to the error 
of the network, i.e., the difference between the current and correct output for a given training pattern. 
This error is propagated backwards from the output layer to the inner layers in order to dertermine 
correction values for all weights of all layers. Taining patterns for α-events were recorded from a 219Rn / 
215Po source. Training data for β-, γ-, and pile up events were recorded mostly from neutron irradiated 
dibutylphosphate (DBP) solved in toluene. All pulses are normalized to a fixed amplitude thus avoiding 
that the network learns an energy calibration. After each training cycle the network was tested with test 
data recorded from the same sources. Fig. 3 shows the error of the network with proceeding training. The 
errror decreases very rapidly and is almost constant after 600 iterations.  
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Figure 3. 

 
Test experiment and results 
 

The PSD-NN system was first tested in a SISAK experiment at the Paul Scherrer Institute in February 
2000. In this experiment, rutherfordium was produced in the reaction 248Cm(18O,5n)261Rf (Ea=8.8 MeV, 
T1/2=78 s). Fig. 4 shows the setup schematically.  
 

Figure 4. 
 
The reaction products transported with a gas - jet are dissolved in 6M HNO3. Group IV elements are 

then extracted with 5% DBP in toluene. In a washing step with 2 M NaNO3 the remaining nitric acid is 
removed. Then, the scintillator consisting of dimethylPOPOP (3g/l) and methylnaphtalene (30vol%) 
dissolved in toluene is added. In this experiment, 4 detector cells of 5.5 ml each connected in series are 
used with the analog PSD electronics. The first detector was also connected to the digital pulse recorder. 
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The power of the artificial neural network is demonstrated in Fig. 5. Fig 5a shows a typical “α-spectrum” 
in the energy range of interest from the analog PSD. In Fig. 5b the same spectrum is shown after 
treatment with the neural network. In the total spectrum 95.8% of the events could be identified as pile 
up events. These results show that low level α-LSC can be significantly improved by the application of 
digital pulse recording in combination with artificial neural networks.  

 

  
Figure 5a. Figure 5b. 

 
A new application of LSC with the digital recording of pulses is the determination of spectroscopic 

data. Pile ups are often associated with coincident nuclear transistions. If these transitions occur in the 
nanosecond regime, a pile up can be resolved such that the two radiations can be separated.This enables 
one to determine lifetimes of excited states. An example is given in Fig. 6 for a measurement of 241Am. The 
α-decay of 241Am populates the 5/2- level in 237Np at 59.5 keV having a lifetime of 67 ns. This correlated α-
γ decay produces pile ups in the scintillator. Fig. 6a gives an example. From the distance between the two 
peaks, a time difference Δt can be determined. The number of pile ups of a given Δt plotted vs. Δt is 
shown in Fig. 6b. From the fit of an exponential decay law to these data, the lifetime of the excited state 
can be determined to 67 ns in good ageement with published data. Thus, this application is promising as 
it allows the determination of hitherto unknown decay properties of short - lived nuclei.  

 

  
Figure 6a. Figure 6b. 
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